Evaluation of an organic amendment as a remediation agent in a cadmium-enriched soil
PDF (Español (España))

How to Cite

Zambrano García, A., Rondón, C., Qasem, V., Hernández, E., Binchi, G., & Dugarte, S. (2026). Evaluation of an organic amendment as a remediation agent in a cadmium-enriched soil. Ceres Journal, 1(1), 120–187. Retrieved from https://revistaceres.com/index.php/ceres/article/view/28

Abstract

Soil organic matter is a complex system of substances in a dynamic and continuous state, a product of the decomposition of animal and plant remains. It is vital for plant development through its effects on the soil's physical, chemical, and biological properties and plays a fundamental role in the migration and transformation of heavy metals in the soil. Its composition is rich in functional groups with negative charges, which gives it a high capacity for absorbing large quantities of heavy metal cations, acting as a natural migratory carrier of metals. Post-harvest cocoa residues are a potential remediation agent for soils contaminated with heavy metals. In this regard, cadmium has been the subject of discussion in recent years due to progressive regulations from the European Union, which establish a maximum limit on the permissible content of this metal in cocoa and its derivatives marketed in Europe and the rest of the world. This research evaluated the remediation behavior of post-harvest cocoa compost in cadmium-enriched soil. Laboratory tests were conducted, characterizing the organic amendment by determining its physicochemical and biological properties. Germination tests were also performed to study the phytotoxicity of the amendment. The results obtained under the established working criteria provided information on the dynamics of cadmium in the amendment. A residual effect of the organic amendments on the solubility of heavy metals was observed, as organic matter can undergo transformations over time, and cadmium extraction from the soil depends on factors such as pH, cation exchange capacity (CEC), and electrical conductivity (EC) over time.

PDF (Español (España))

References

Alloway, B. (2012). Sources of Heavy Metals and Metalloids in Soils. Heavy Metals in Soils, 11-50. https://doi.org/10.1007/978-94-007-4470-7_2

Amoah, C., Kwiatkowska, J., Szara, E., Thornton, S., Fenton, O., y Malina, G. (2020). Efficacy of Woodchip Biochar and Brown Coal Waste as Stable Sorbents for Abatement of Bioavailable Cadmium, Lead and Zinc in Soil. Water, Air, & Soil Pollution, 231(10), 515. https://doi.org/10.1007/s11270-020-04885-4.

Awasthi, M.K., Pandey, A.K., Khan, J., Bundela, P.S., Wong, J.W.C., Selvam, A., (2014). Evaluation of thermophilic fungal consortium for organic municipal soil waste composting. Bioresour. Technology, 168, 214–221. https://doi.org/10.1016/j.biortech.2014.01.048

Awasthi, M. K., Selvam, A., Lai, K. M., y Wong, J. W. C. (2017). Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium. Bioresource Technology, 245, 665–672. https://doi.org/10.1016/j.biortech.2017.09.014

Azevedo, M., Ferraciú, L. y Guimaraes, G. (2003). Biosolids and heavy metals in soils. Scientia Agricola, 60(4), 793-806.

Aziz, M., Ahmad, H., Corwin, D., Sabir, M., Hakeem, K., y Öztürk, M. (2017). Influence of farmyard manure on retention and availability of nickel, zinc, and lead in metal-contaminated calcareous loam soils. Journal of Environmental Engineering and Landscape Management, 25(3), 289-296. https://doi.org/10.3846/16486897.2016.1254639

Bagur, M., Estepa, C., Martín, F y Morales, S. (2011). Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. Journal of Soils and Sediments, 11, 281–289. https://doi.org/10.1007/s11368-010-0285-4

Beesley, L. y Marmiroli, M. 2011. The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 159, 474-480. https://doi.org/10.1016/j.envpol.2010.10.016

Beloso, M. (1991). Estudio de la Gallinaza como fertilizante agrícola. Universidad de Santiago de Compostela. 313 p.

Bogusz, A., Oleszczuk, P. y Dobrowolski, R. (2017). Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil. Environmental Geochemistry and Health, 41, 1663-1674. https://doi.org/10.1007/s10653-017-0036-1.

Borggaard, O., Holm, P., y Strobel, B. (2019). Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review. Geoderma, 343, 235-246. https://doi.org/10.1016/j.geoderma.2019.02.041

Bravo, R., Arboleda, P., y Martín, P. 2014. Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en la retención de cadmio, en sistemas altoandinos de Colombia. Acta Agronómica, 63(2), 159-169. https://doi.org/10.15446/acag.v63n2.39569

Carrero, A. (2014). Fraccionamiento de fósforo en un suelo cultivado con cacao, en la localidad de San Juan de Lagunillas, municipio Sucre del estado Mérida. Universidad de Los Andes. 63 p.

Casas, R. (2011). El suelo de cultivo y las condiciones climáticas. Ediciones Paraninfo. 20 p.

CODEX Alimentarius (1995). Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos. CODEX STAN 193-1995. https://goo.gl/XqGcyo.

Chang, R., Guo, Q., Chen, Q., Bernal, M. P., Wang, Q., y Li, Y. (2019). Effect of initial material bulk density and easily-degraded organic matter content on temperature changes during composting of cucumber stalk. Journal of Environmental Sciences, 80, 306-315 https://doi.org/10.1016/j.jes.2017.10.004

Chacón, I., Gómez, C., y Márquez, V. (2007). Caracterización morfológica de frutos y almendras de plantas de cacao (Theobroma cacao L.) en la región suroccidental de Venezuela. Rev. Fav. Agron. (LUZ), 24(1), 202-207. https://www.revfacagronluz.org.ve/PDF/supl_mayo_2007/v24supl35.pdf

Charles, J., Sancey, B., Morin, N., Badot, P., Degiorgi, F., Trunfio, G., y Crini, G. (2011). Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicology and Environmental Safety, 74(7), 2057-2064. https://doi.org/10.1016/j.ecoenv.2011.07.025

Clemente, R. y Bernal, B. (2006). Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere 64(8), 1264 – 1273. https://doi.org/10.1016/j.chemosphere.2005.12.058

Cortés, L., Bravo, I., Martin, F. y Menjivar, J. (2016). Extracción secuencial de metales pesados en dos suelos contaminados (Andisol y Vertisol) enmendados con ácidos húmicos. Acta Agronómica, 65(3), 232-238. https://doi.org/10.15446/acag.v65n3.44485

Cortés, L., Martin, F. y Sarria, M. (2017). Evaluación de la toxicidad de metales pesados en dos suelos agrícolas de Colombia mediante bioensayos. Temas Agrarios, 22(2), 43-53. https://core.ac.uk/reader/231232580

Cristaldi, A., Conti, C., Jho, E., Zucarello, P., Grasso, A., Copat, C., y Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation, 8, 309-326. https://doi.org/10.1016/j.eti.2017.08.002

Crowther, T., Van den Hoogen, J., Wan, J., Mayes, M., Keiser, A., Mo, L., Averill, C., y Maynard, D. (2019). The global soil community and its influence on biogeochemistry. Science, 365, 6445. https://doi.org/ 10.1126/science.aav0550

Dávila, E. (2019). Uso de enmiendas en la reducción del contenido de cadmio en el suelo y en los granos del cacao (Theobroma cacao L.) Clon CCN-51 [Tesis de maestría, Universidad Nacional Agraria de la Selva]. http://repositorio.unas.edu.pe/handle/UNAS/1623

Díaz, M., y Baath, E. (1996). Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Applied and Environmental Microbiology, 62(8), 2970-2977. https://doi.org/10.1128/aem.62.8.2970-2977.1996

Duley, L., Mclean, J., Sims, R. y Jurinak, K. (1988). Sortion of copper and cadmiun from the wáter-soluble fraction of an acid mine waste by two calcareous soils. Soil. Sci., 145, 207-214.

FAO/WHO. (2014). Anteproyecto de niveles máximos para el cadmio en el chocolate y productos derivados de cacao. Comisión del Codex Alimentarius. https://goo.gl/5MeHzF.

Faithfull, N. (2005). Métodos de análisis químico agrícola. Manual Práctico. Editorial ACRIBIA. 318p.

Fijalkowski, K., Kacprzak, M., y Grobelak, A. (2012). The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona Środowiska, 15(1), 81-92. https://ios.is.pcz.pl/images/ios_repo/2012/zeszyt1/2012_1_7-FIALKOWSKI.pdf

Fidelis, C., y Rajashekhar, R. (2017). Enriched cocoa pod composts and their fertilizing effects on hybrid cocoa seedlings. International Journal of Organic Waste in Agriculture, 6, 99-106. https://doi.org/10.1007/s40093-017-0156-8

Fritze, H., Perkiömäki, J., Saarela, U., Katainen, R., Tikka, P., Yrjälä, K., Karp, M., Haimi, J., y Romantschuk, M. (2000). Effect of Cd-containing wood ash on the microflora of coniferous forest humus. FEMS Microbiology Ecology, 32, 43-51. https://doi.org/10.1111/j.1574-6941.2000.tb00697.x

Galán, E. (2000). The role of clay minerals in removing and immobilizing heavy metals from contaminated soils en C. Gomes (Ed), In Proceedings of the 1st Latin American Clay Conference (Vol.1, pp. 351-361). Funchal.

Gilabert, J., López, I., y Pérez, R. (1990). Manual de Métodos y Procedimientos de Referencia. Fondo Nacional de investigaciones Agropecuarias.

Hamid, Y., Tang, L., Hussain, B., Usman, M., Lin, Q., Rashid, M., Yang, X. (2020). Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Science of The Total Environment, 707, 136121. https://doig.org/10.1016/j.scitotenv.2019.136121.

Harada, Y., Inoko, A. (1980). The measurement of the catión-exchange capacity of compost for the estimation of the degree of maturity. Soil. Sci.Plant. Nutr., 26(1), 127-134.

Harvey, O., Herbert, B., Rhue, R., &Kuo, L. (2011). Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry. Environmental Science & Technology, 45(13), 5550-5556. https://doi.org/10.1021/es104401h

Hernández, T., García, C. (2003). Estimación de la respiración microbiana del suelo. Ediciones Mundi-Prensa.

Huang, J., Yu, Z., Gao, H., Yan, X., Chang, J., Wang, C., Hu, J., Zhang, L., (2017). Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices. PLoS ONE 12, e0178110. https://doi.org/10. 1371/journal.pone.0178110

Hurtado, A., Caldera, A., Milano, B., Ibarra, C., Díaz, A., Camacho, J., Villamizar, J., y Verde, O. (2017). Notas Técnicas: Análisis de datos bajo condiciones de repetibilidad. Archivos Venezolanos de Farmacología y Terapéutica, 36(2). http://ve.scielo.org/scielo.php?pid=S0798-02642017000200002&script=sci_arttext&tlng=en

Iannacone, J. y Alvariño, L. (2005). Efecto ecotoxicológico de tres metales pesados sobre el crecimiento radicular de cuatro plantas vasculares. Agricultura Técnica (Chile), 65(2), 198-203. http://dx.doi.org/10.4067/S0717-6538000000200003

Inbar, Y., Chen, Y. y Hadar, Y. (1989). Solid-state-carbon-13 nuclear magnetic resonance and infrared spectroscopy of compost organic matter. Soil Science Society of America Journal Abstract, 53(6), 1695-1701.

Irfan, M., Mudassir, M., Khan, M., Dawar, K., Muhammad, D., Mian, I., Waqas, A., Fahad, S., Saud, S., Hayat, Z., Nawaz, T., Khan, S., Alam, S., Ali, B., Banout, J., Ahmed, S., Mubeen, S., Danish, Datta, R., Dewil, R. (2021). Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientific Reports, 11, 18416. https://doi.org/10.1038/s41598-021-97525-8

Jara, J., Pérez, M., Bustamante, M., Pérez, A., Paredes, C., López, M., y Moral, R. (2017). Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. Journal of Cleaner Production, 141, 1349–1358. https://doi.org/10.1016/j.jclepro.2016.09.178

Kabata, A. (2000). Trace elements in soils and plants. (3a ed). CRC Press. https://doi.org/10.1201/9781420039900

Kim, C., Lee, Y., y Ong, S. (2003). Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere, 51(9), 845-853. https://doi.org/10.1016/s0045-6535(03)00155-3.

Lamb, D., Ming, H., Megharaj, M. y Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171, 1150-1158.

Lanza, J., Churión, P., Liendo, N., y López, V. (2016). Evaluación del contenido de metales pesados en cacao (Teobroma cacao L.) de Santa Brárbara del Zulia, Venezuela. Saber, Universidad de Oriente, Venezuela, 28 (1), 106-115.

Larios, B. (2014). Niveles de Cd, Co, Cr, Cu, Ni, Pb y Zn en los suelos de ribera de la cuenca del río Turia [Tesis de maestría]. Universidad Pública de Navarra. 173 p.

Lima, J., Raimondi, I., Schalch, V. y Rodrigues, V. (2018). Assessment of the use of organic composts derived from municipal solid waste for the adsorption of Pb, Zn y Cd. Journal of Environmental Management, 226, 386-399.

Liu, L., Chen, H., Cai, P., Lian, W., Huang, Q. (2009). Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. Journal of Hazardous Materials, 163, 563-567.

Liu, P., Ptacek, C. J., y Blowes, D. W. (2019). Mercury Complexation with Dissolved Organic Matter Released from Thirty-Six Types of Biochar. Bulletin of Environmental Contamination and Toxicology, 103, 175-180. https://doi.org/10.1007/s00128-018-2397-2

Lofts, S.; Spurgeon, D. y Svendsen, C. (2005). Fractions affected and probabilistic risk assessment of Cu, Zn, Cd, and Pb in soils using the free ion approach. Environmental Science and Technology, 39(21), 8533-8540.

Lora, R., y Bonilla, H. (2010). Remediación de un suelo de la cuenca alta del río Bogotá contaminado con los metales pesados cadmio y cromo. Revista U.D.C.A Actualidad & Divulgación Científica, 13(2), 61–70. https://doi.org/10.31910/rudca.v13.n2.2010.730

Lwin, C., Seo, B., Kim, H., Owens, G., y Kim, K. (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality-a critical review. Soil Science and Plant Nutrition, 64(2), 156-167. https://doi.org/10.1080/00380768.2018.1440938

Martínez, D. y Marrugo, J. (2021). Efecto de la adición de enmiendas en la inmovilización de metales pesados en suelos mineros del sur de Bolívar, Colombia. Ciencia & Tecnología Agropecuaria, 22(2), e2272. https://doi.org/10.21930/rcta.vol22_num2_art:2272

Melgarejo, M., Ballesteros G., y Bendeck, M. (1997). Evaluación de algunos parámetros fisicoquímicos y nutricionales en humus de lombriz y composts derivados de diferentes sustratos. Revista Colombiana de Química, 26 (2). https://revistas.unal.edu.co/index.php/rcolquim/article/view/16360

Munive, R., Loli, O., Azabache, A., Gamarra, G. (2018). Fitorremediación con Maíz (Zea mays L.) y compost de Stevia en suelos degradados por contaminación con metales pesados. Scientia Agropecuaria, 9(4), 551-560.

Nieto, S., Pacheco, L., Galán, C., y Páez, M. (2011). Estudio de las Interacciones Ácido Húmico-Metales Pesados y Determinación de sus Constantes de Estabilidad por Electroforesis Capilar. Información Tecnológica, 22 (3), 45-54. DOI: 10.4067/S0718-07642011000300007.

Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of The Total Environment, 311(1-3), 205–219. https://doi.org/10.1016/S0048-9697(03)00139-6.

Ouni, Y., Ghnaya, T., Montemurrob, F., Abdellya, C., y Lakhdara, A. (2014). The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. International Journal of Plant Production 8 (3), 1735-6814.

Owsianiak, M., Holm, P., Fantke, P., Christiansen, K., Borggaard, O., y Hauschild, M. (2015). Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source. Environmental Pollution, 206, 400-410. https://doi.org/10.1016/j.envpol.2015.07.025

Paz, J. (2006). Propiedades bioquímicas de suelos de Prado de Galicia [Tesis de doctorado Universidad de Santiago de Compostela]. http://hdl.handle.net/10347/2269

Perkin Elmer. (2003). AAnalyst 600/700/800 Manual de servicio. https://www.perkinelmer.com/es/Perkin-Elmer-AAnalyst-600-Service-Manual-And-Support-Files-/133326493602.

Pinamonti, F., Stringari, G., Gasperi, F. y Zorzi, G. (1997). The use of compost: its effects on heavy metal levels in soil and plants. Resources, Conservation and Recycling, 21, 129-13.

Poschenrieder, C., Tolrá, R., & Barceló, J. (2006). Can metals defend plants against biotic stress? Trends in Plant Science, 11(6), 288–295. https://doi.org/10.1016/j.tplants.2006.04.007

Poulin, B., Gerbig, C., Kim, C., Stegemeier, J., Ryan, J., y Aiken, G. (2017). Effects of Sulfide Concentration and Dissolved Organic Matter Characteristics on the Structure of Nanocolloidal Metacinnabar. Environmental Science & Technology, 51(22), 13133-13142. https://doi.org/10.1021/acs.est.7b02687

Prieto, J., González, C., Román, A. y Prieto, F. (2009). Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems, 10(1), 29-44.

Priac, A., Badot, P.M., y Crini, G. (2017). Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters. Comptes Rendus Biologies, 340(3), 188–194. https://doi.org/10.1016/j.crvi.2017.01.002

Raiesi, F., y Dayani, L. (2020). Compost application increases the ecological dose values in a non-calcareous agricultural soil contaminated with cadmium. Ecotoxicology, 30, 17–30. https://doi.org/10.1007/s10646-020-02286-1

Rivero, C. (1999). Materia orgánica del suelo. Revista Alcance 57. Universidad central de Venezuela. 211 p.

Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids en D. L Sparks, A. L Page, P.A Helmke, R. H Loeppert, P.N. Soltanpour, M. A. Tabatabai, C. T. Johnston, M. E. Summer (Ed.), Methods of Soil Analysis. Part 3. Book series N.° 5 (417-434). Soil Science Society of American Society of Agronomy (SSSA). https://doi.org/10.2136/sssabookser5.3.c14

Romero, H., Acaro, J., Camacho, A., y Castillo, A. (2017). Confiabilidad de un método para la determinación de CO2 por cromatografía de gases. Cumbres, 3(1), 4-46.

Ron, A. (2004). Ácidos húmicos y fúlvicos de origen orgánico en el crecimiento de plántula de tomate (Lycopersicon esculentum Mill) en invernadero. Universidad Autónoma Agraria Antonio Narro. 53 p.

Salazar, H. (2019). Evaluación de la capacidad de retención de humedad y densidad de compost obtenido por los métodos aerotérmico y aerotérmico con aireación extendida, Juliaca 2017. [Tesis de pregrado, Universidad Andina Néstor Cáceres Velásquez]. Repositorio de Tesis-Universidad Andina Néstor Cáceres Velásquez.

Sánchez, N. (2013). Modelización de los procesos químicos relacionados con la dinámica del cadmio en dos suelos agrícolas de Venezuela. Universidad de Carabobo.

Sánchez, M., Rengifo, J. (2017). Evaluación del contenido de metales pesados (Cd y Pb) en diferentes edades y etapas fenológicas del cultivo de cacao en dos zonas del Alto Huallaga, Huánuco (Perú). Revista de Investigación en Agroproducción Sustentable, 1(1), 87-94. http://dx.doi.org/10.25127/aps.20171.356

Semida, W. M., Abd El-Mageed, T. A., y Howladar, S. M. (2014). A novel órgano-mineral fertilizer can alleviate negative efects of salinity stress for eggplant production on reclaimed saline calcareous soil. Acta Horticulturae, (1034), 493-499. https://doi.org/10.17660/actahortic.2014.1034.61

Sernapesca. (2018). Guía de Validación de Métodos Analíticos. Manual de Inocuidad y Certificación. Ministerio de Economía, Fomento y Turismo. http://www.sernapesca.cl/sites/default/files/f59_guia_de_validaciones_de_metodos_analiticos_08.02.18.pdf.

Siles, A. B., López, M. J., Jurado, M. M., Suárez-Estrella, F., López-González, J. A., Estrella-González, M. J., & Moreno, J. (2020). Industrial composting of low carbon/nitrogen ratio mixtures of agri-food waste and impact on compost quality. Bioresource Technology, 316, 123946. https://doi.org/10.1016/j.biortech.2020.123946

Soler, P., Madejón, E., Madejón, P. y Plaza, C. (2010). In situ remediation of metal-contaminated soils with organic amendments: Role of humic acids in copper bioavailability. Chemosphere, 79, 844-849.

Stotzky, G. 1965. Microbial respiration. En: C.A. Black, D.D. Evans, J.L. White, I.E. Ensminger, y F.E. Clark, (Eds.). Methods of Soil Analysis. Part 2. Agronomy 9 (pp. 1550-1572). American Society of Agronomy

Tam, N., y Tiquia, S. (1994). Assessing toxicity of spent pig litter using a seed germination technique. Resources, Conservation and Recycling, 11(1-4), 261-274. https://doi.org/10.1016/0921-3449(94)90094-9

Tang, J., Maie, N., Tada, Y., y Katayama, A. (2006). Characterization of the maturing process of cattle manure compost. Process Biochemistry, 41(2), 380-389. https://doi.org/10.1016/j.procbio.2005.06.022

Tiller, K. (1989). Heavy Metals in Soils and Their Environmental Significance. Advances in Soil Science, 113-142.

Trautmann, N., y Krasny, M. (1998). Composting in the classroom. Kendall/Hunt Publishing Company. https://ecommons.cornell.edu/bitstream/handle/1813/3338/?sequence=1 U.S. EPA. 1996. “Method 3050B: Acid Digestion of Sediments, Sludges, and Soils,” Revision 2. Washington, DC. 197 K, 12.12. https://epa.gov/sites/default/files/2015-12/documents/3051a.pdf

Venegas, A. (2015). Evaluación de la adición de materiales de origen orgánico para la remediación de suelos contaminados con metales pesados [Tesis de doctorado]. Universidad de Barcelona. 241 p.

Vitinaqailevu, R., y Rajashekhar, R. (2019). The role of chemical amendments on modulating ammonia loss and quality parameters of co-composts from waste cocoa pods. International Journal of Recycling of Organic Waste in Agriculture, 8, 153-160. https://doi.org/10.1007/s40093-019-0285-3.

Vriesmann, L., Teo´flo R., y Petkowic C. (2012) Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. LWT Food Sci Technol, 49(1), 108–116. https://doi.org/10.1016/j.lwt.2012.04.018

Wang, P., Peng, H., Liu, J., Zhu, Z., Bi, X., Yu, Q., y Zhang, J. (2020). Effects of exogenous dissolved organic matter on the adsorption–desorption behaviors and bioavailabilities of Cd and Hg in a plant–soil system. Science of The Total Environment, 728, 138252. https://doi.org/10.1016/j.scitotenv.2020.138252.

Wyszkowska, J., Borowik, A., Kucharski, M., y Kucharski, J. (2013). Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. Journal of Elementology, 18(4), 769-796. http://doi.org/10.5601/jelem.2013.18.4.455.

Xu, Y., Seshadri, B., Bolan, N., Sarkar, B., Ok, Y., Zhang, W., Rumpel, C., Sparks, D., Farrell, M., Hall, T., y Dong, Z. (2019). Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment International, 125, 478-488. https://doi.org/10.1016/j.envint.2019.01.071.

Yi, H., Men, B., Yang, X., Li, Y., Hui, X., Wang, D. (2019). Relationship between heavy metals and dissolved organic matter released from sediment by bioturbation/bioirrigation. J. Environ. Sci. 75 (S1001074217334794). https://doi.org/10.1016/j.jes.2018.03.031.

Zambrano, A. (2005). Caracterización química de enmiendas orgánicas [Tesis de maestría]. Universidad Central de Venezuela. 153 p.

Zapata, Raúl. (2004). Química de la acidez del suelo. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/3280.

Zhao, C., Gao, S., Zhou, L., Li, X., Chen, X., y Wang, C. (2019). Dissolved organic matter in urban forestland soil and its interactions with typical heavy metals: a case of Daxing District, Beijing. Environmental Science and Pollution Research, 26, 2960-2973 https://doi.org/10.1007/s11356-018-3860-7

Zhu, W., Yao, W. y Du, W. (2016). Heavy metal variation and characterization change of disolved organic matter (DOM) obtained from composting or vermicomposting pig manure amended with maize Straw. Environmental Science and Pollution Research, 23(12), 2128-12139. https://doi.org/10.1007/s11356-016-6364-3

Zhu, W., Du, W., Shen, X., Zhang, H., Ding, Yin. (2017) Comparative adsorption of Pb2+ and Cd2+ by cow manure its vermicompost. Environmental Pollution, 227, 89-97.

Zucconi, F., Forte, M., Monaco, A. y De Bertoldi, M. (1981a). Evaluating toxicity of in nature compost. BioCycle, 22, 54-57.

Zucconi, F., Forte, M., Monaco, A. y De Bertoldi, M. (1981b). Evaluating toxicity of in nature compost. BioCycle, 22, 54-57.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2026 Ceres Journal