Ecological responses of Holothuria sanctori to metal contamination at La Punta del Hidalgo, Tenerife Island: two-year monitoring and analysis
PDF

Keywords

metal
trace element
underwater outfall
bioindicator
environmental monitoring

How to Cite

Lozano Bilbao, E., González Weller, D., & Gutiérrez, Ángel. (2026). Ecological responses of Holothuria sanctori to metal contamination at La Punta del Hidalgo, Tenerife Island: two-year monitoring and analysis. Ceres Journal, 1(1), 207–228. Retrieved from https://revistaceres.com/index.php/ceres/article/view/24

Abstract

This study investigates the variations in metal and trace element concentrations within the Holothuria sanctori species over two years, between 2021 and 2022, with a specific focus on differences between the "Cold" and "Warm" stations. A total of 80 specimens were collected during four sampling periods, each comprising 20 individuals in the months of January and August. The selection of Punta del Hidalgo as the sampling area was based on the presence of this species in the intertidal zone and the observation of a higher number of specimens in the vicinity of an underwater outfall. The analysis of metal contents (Zn, Cd, Pb, Cu, Ni, Cr, and Fe in mg/kg) revealed significant differences in concentrations between the "Cold" and "Warm" stations across the study years. The warm station consistently displayed higher metal levels, with notable increments observed in zinc (Zn), cadmium (Cd), lead (Pb), copper (Cu), nickel (Ni), chromium (Cr), and iron (Fe). Variations in metal concentrations within H. sanctori during the summer months at the warm station can be attributed to seasonal weather conditions, increased tourist activities, and ocean currents transporting contaminants. The study underscores the importance of monitoring and controlling exposure to toxic metals. Limits established for cadmium, lead, and nickel exposure provide crucial data for public health policies and environmental regulations, safeguarding against adverse effects of chronic metal exposure.

PDF

References

Ahmed Q, Ali QM, Bat L (2017). Assessment of heavy metals concentration in Holothurians, sediments and water samples from coastal areas of Pakistan (northern Arabian Sea). Journal of Coastal Life Medicine 5:191–201

Ali H, Khan E, Ilahi I (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019

Anderson M, Braak C Ter (2003). Permutation tests for multi-factorial analysis of variance. J Stat Comput Simul 73:85–113. https://doi.org/10.1080/00949650215733

Anderson, M. (2004). The Resource for the Power Industry Professional. Proceedings of ASME POWER 32

Ardeshir, R., Movahedinia, A. and Rastgar, S. (2017). Fish liver biomarkers for heavy metal pollution: a review article. American Journal of Toxicology 2:1–8

Auger PAA, Machu E, Gorgues T, et al (2015). Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling. Science of the Total Environment 505:870–888. https://doi.org/10.1016/j.scitotenv.2014.10.045

Barros MC, Bello P, Roca E, Casares JJ (2007). Integrated pollution prevention and control for heavy ceramic industry in Galicia (NW Spain). J Hazard Mater 141:680–692. https://doi.org/10.1016/j.jhazmat.2006.07.037

Boluda-Botella N, Saquete MD, Sanz-Lázaro C (2023). Holothuria tubulosa as a bioindicator to analyse metal pollution on the coast of Alicante (Spain). J Sea Res 192:102364

Clark RB, Frid C, Attrill M (2001). Marine pollution. Oxford university press Oxford.

Corrias F, Atzei A, Addis P, et al (2020). Integrated environmental evaluation of heavy metals and metalloids bioaccumulation in invertebrates and seaweeds from different marine coastal areas of sardinia, mediterranean sea. Environmental Pollution 266:115048

Dolenec M, Žvab P, Mihelčić G, et al (2011). Use of stable nitrogen isotope signatures of anthropogenic organic matter in the coastal environment: The case study of the Kosirina Bay (Murter Island, Croatia). Geologia Croatica 64:143–152. https://doi.org/10.4154/gc.2011.12

Durrieu de Madron X, Guieu C, Sempéré R, et al (2011). Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog Oceanogr 91:97–166. https://doi.org/10.1016/j.pocean.2011.02.003

Gaudry A, Zeroual S, Gaie-Levrel F, et al (2007). Heavy metals pollution of the Atlantic marine environment by the Moroccan phosphate industry, as observed through their bioaccumulation in Ulva lactuca. Water Air Soil Pollut 178:267–285

González-Delgado S, Lozano-Bilbao E, Hardisson A, et al (2024). Metal concentrations in echinoderms: Assessing bioindicator potential and ecological implications. Mar Pollut Bull 205:116619. https://doi.org/10.1016/j.marpolbul.2024.116619

Hamel J-F, Conand C, Pawson DL, Mercier A (2001). The sea cucumber Holothuria scabra (Holothuroidea: Echinodermata): its biology and exploitation as beche-de-mer

Harrison RM (2001). Pollution: causes, effects and control. Royal society of chemistry

Hossain S, Latifa GA, Al Nayeem A (2019). Review of cadmium pollution in Bangladesh. J Health Pollut 9:190913

Howarth RJ, Evans G, Croudace IW, Cundy AB (2005). Sources and timing of anthropogenic pollution in the Ensenada de San Simón (inner Ría de Vigo), Galicia, NW Spain: an application of mixture-modelling and nonlinear optimization to recent sedimentation. Science of The Total Environment 340:149–176. https://doi.org/10.1016/j.scitotenv.2004.08.001

Jiang G-B, Shi J-B, Feng X-B (2006). Mercury pollution in China. Environ Sci Technol 40:3672–3678

Karantininis K, Sauer J, Furtan WH (2010). Innovation and integration in the agri-food industry. Food Policy 35:112–120

Kerfahi D, Ogwu MC, Ariunzaya D, et al (2020). Metal-tolerant fungal communities are delineated by high zinc, lead, and copper concentrations in Metalliferous Gobi Desert Soils. Microb Ecol 79:420–431

Kravchenko J, Darrah TH, Miller RK, et al (2014). A review of the health impacts of barium from natural and anthropogenic exposure. Environ Geochem Health 36:797–814. https://doi.org/10.1007/s10653-014-9622-7

Li H, Ji H, Shi C, et al (2017). Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health. Chemosphere 172:505–515. https://doi.org/10.1016/j.chemosphere.2017.01.021

Lozano-Bilbao E, Alcázar-Treviño J (2023). Sewage Pipe Waters Affect Colour Composition in Palaemon Shrimp from the Intertidal in the Canary Islands: A New Non-lethal Bioindicator of Anthropogenic Pollution. Diversity (Basel) 15:658

Lozano-Bilbao E, Alcázar-Treviño J, Fernández JJ (2018). Determination of δ15N in Anemonia sulcata as a pollution bioindicator. Ecol Indic 90:179–183. https://doi.org/10.1016/j.ecolind.2018.03.017

Lozano-Bilbao E, Delgado-Suárez I, Hardisson A, et al (2023a). Impact of the lockdown period during the COVID-19 pandemic on the metal content of the anemone Anemonia sulcata in the Canary Islands (CE Atlantic, Spain). Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.140499

Lozano-Bilbao E, Espinosa JM, Thorne-Bazarra T, et al (2023b). Monitoring different sources of marine pollution in the Canarian intertidal zone using Anemonia sulcata as a bioindicator. Mar Pollut Bull 195:115538

Lozano-Bilbao E, González-Delgado S, Alcázar-Treviño J (2021). Use of survival rates of the barnacle Chthamalus stellatus as a bioindicator of pollution. Environmental Science and Pollution Research 28:1247–1253. https://doi.org/10.1007/s11356-020-11550-0

Lozano-Bilbao E, Hardisson A, Paz S, et al (2024). Review of metal concentrations in marine organisms in the Canary Islands: Insights from twenty-three years of research. Reg Stud Mar Sci 71:103415. https://doi.org/10.1016/j.rsma.2024.103415

Magdy M, Otero-Ferrer F, de Viçose GC (2021). Preliminary spawning and larval rearing of the sea cucumber Holothuria sanctori (Delle Chiaje, 1823): A potential aquaculture species. Aquac Rep 21:100846

Mohammadizadeh M, Bastami KD, Ehsanpour M, et al (2016). Heavy metal accumulation in tissues of two sea cucumbers, Holothuria leucospilota and Holothuria scabra in the northern part of Qeshm Island, Persian Gulf. Mar Pollut Bull 103:354–359. https://doi.org/10.1016/j.marpolbul.2015.12.033

Morgan AD (2001). The effect of food availability on early growth, development and survival of the sea cucumber Holothuria scabra (Echinodermata: Holothuroidea). SPC Beche-de-mer Information Bulletin 14:6–12

Morrison KG, Reynolds JK, Wright IA (2019). Subsidence fracturing of stream channel from longwall coal mining causing upwelling saline groundwater and metal-enriched contamination of surface waterway. Water Air Soil Pollut 230:1–13

Navarro PG, García-Sanz S, Barrio JM, Tuya F (2013). Feeding and movement patterns of the sea cucumber Holothuria sanctori. Mar Biol 160:2957–2966

Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006). Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40:4048–4063

Parra-Luna M, Martín-Pozo L, Hidalgo F, Zafra-Gómez A (2020). Common sea urchin (Paracentrotus lividus) and sea cucumber of the genus Holothuria as bioindicators of pollution in the study of chemical contaminants in aquatic media. A revision. Ecol Indic 113:106185. https://doi.org/10.1016/j.ecolind.2020.106185

Penha-Lopes G, Torres P, Cannicci S, et al (2011). Monitoring anthropogenic sewage pollution on mangrove creeks in southern Mozambique: A test of Palaemon concinnus Dana, 1852 (Palaemonidae) as a biological indicator. Environmental Pollution 159:636–645

Pezzullo PC (2009). Toxic tourism: Rhetorics of pollution, travel, and environmental justice. University of Alabama Press

Reglamento (CE) No 420/2011 (2011). Reglamento (CE) No 420/2011 de la Comisión de 29 de abril de 2011 que modifica el Reglamento (CE) no 1881/2006, por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios

Reglamento (CE) No 1881/2006 (2006). Reglamento (CE) No 1881/2006 DE LA COMISIÓN de 19 de diciembre de 2006 por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios.

Reglamento (UE) No 488/2014 (2014). Reglamento (UE) No 488/2014 DE LA COMISIÓN de 12 de mayo de 2014 que modifica el Reglamento (CE) no. 1881/2006 por lo que respecta al contenido máximo de cadmio en los productos alimenticios.

Reglamento (UE)2015/1005 (2015). Reglamento (UE) 2015/1005 DE LA COMISIÓN de 25 de junio de 2015 que modifica el Reglamento (CE) no. 1881/2006 por lo que respecta al contenido máximo de plomo en determinados productos alimenticios

Ritchie H, Roser M (2018). Plastic pollution. Our World in Data

Shekhar TRS, Kiran BR, Puttaiah ET, et al (2008). Phytoplankton as index of water quality with reference to industrial pollution. J Environ Biol 29:233

Sicuro B, Manuela P, Francesco G, et al (2012a). Food quality and safety of Mediterranean Sea cucumbers Holothuria tubulosa and Holothuria polii in southern Adriatic Sea. Asian J Anim Vet Adv 7:851–859

Sicuro B, Piccinno M, Gai F, et al (2012b). Food quality and safety of Mediterranean Sea cucumbers Holothuria tubulosa and Holothuria polii in southern Adriatic Sea

Sroyraya M, Hanna PJ, Siangcham T, et al (2017). Nutritional components of the sea cucumber Holothuria scabra. Functional Foods in Health and Disease 7:168–181

Temsch EM, Temsch W, Ehrendorfer-Schratt L, Greilhuber J (2010). Heavy Metal Pollution, Selection, and Genome Size: The Species of the Žerjav Study Revisited with Flow Cytometry. J Bot 2010:1–11. https://doi.org/10.1155/2010/596542

Thorne-Bazarra T, Lozano-Bilbao E, Hardisson A, et al (2023). Seagrass meadows serve as buffers for metal concentrations in the fish species Sparisoma cretense in the Canary Islands (Atlantic EC, Spain). Reg Stud Mar Sci 67:103192

Tomas M, Domènech J, Capdevila M, et al (2013). The sea urchin metallothionein system: Comparative evaluation of the SpMTA and SpMTB metal-binding preferences. FEBS Open Bio 3:89–100. https://doi.org/10.1016/j.fob.2013.01.005

Turk Culha S, Dereli H, Karaduman FR, Culha M (2016). Assessment of trace metal contamination in the sea cucumber (Holothuria tubulosa) and sediments from the Dardanelles Strait (Turkey). Environmental Science and Pollution Research 23:11584–11597

Tuwo A, Conand C (1992). Reproductive biology of the holothurian Holothuria forskali (Echinodermata). Journal of the Marine Biological Association of the United Kingdom 72:745–758

Verma R, Dwivedi P (2013). Heavy metal water pollution-A case study. Recent Research in Science and Technology 5.

Vikas M, Dwarakish GS (2015). Coastal Pollution: A Review. Aquat Procedia 4:381–388. https://doi.org/10.1016/j.aqpro.2015.02.051

Wang M, Zhu Y, Cheng L, et al (2018). Review on utilization of biochar for metal-contaminated soil and sediment remediation. Journal of Environmental Sciences 63:156–173

Warnau M, Dutrieux S, Ledent G, et al (2006). Heavy metals in the sea cucumber Holothuria tubulosa (Echinodermata) from the Mediterranean Posidonia oceanica ecosystem: body compartment, seasonal, geographical and bathymetric variations. Environ Bioindic 1:268–285

Xing J, Chia F-S (1997). Heavy metal accumulation in tissue/organs of a sea cucumber, Holothuria leucospilota. Hydrobiologia 352:17–23

Yuan Z, Luo T, Liu X, et al (2019). Tracing anthropogenic cadmium emissions: From sources to pollution. Science of the total environment 676:87–96

Zavodny E, Culleton BJ, McClure SB, et al (2017). Minimizing risk on the margins: Insights on Iron Age agriculture from stable isotope analyses in central Croatia. J Anthropol Archaeol 48:250–261. https://doi.org/10.1016/j.jaa.2017.08.004

Zheng H, Ren Q, Zheng K, et al (2022). Spatial distribution and risk assessment of metal(loid)s in marine sediments in the Arctic Ocean and Bering Sea. Mar Pollut Bull 179:113729. https://doi.org/10.1016/J.MARPOLBUL.2022.113729

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2026 Ceres Journal